
ProcSy: Procedural Synthetic Dataset Generation Towards Influence Factor

Studies Of Semantic Segmentation Networks

Samin Khan Buu Phan Rick Salay Krzysztof Czarnecki

University Of Waterloo

Waterloo, ON, Canada

{sa24khan, buu.t.phan}@uwaterloo.ca {rsalay, kczarnec}@gsd.uwaterloo.ca

Abstract

Real-world, large-scale semantic segmentation datasets

are expensive and time-consuming to create. Thus, the

research community has explored the use of video game

worlds and simulator environments to produce large-scale

synthetic datasets, mainly to supplement the real-world

ones for training deep neural networks. Another use of syn-

thetic datasets is to enable highly controlled and repeatable

experiments, thanks to the ability to manipulate the content

and rendering of synthesized imagery. To this end, we out-

line a method to generate an arbitrarily large, semantic seg-

mentation dataset reflecting real-world features, while min-

imizing required cost and man-hours. We demonstrate its

use by generating ProcSy, a synthetic dataset for semantic

segmentation, which is modeled on a real-world urban envi-

ronment and features a range of variable influence factors,

such as weather and lighting. Our experiments investigate

impact of the factors on performance of a state-of-the-art

deep network. Among others, we show that including as lit-

tle as 3% of rainy images in the training set, improved the

mIoU of the network on rainy images by about 10%, while

training with more than 15% rainy images has diminishing

returns. We provide ProcSy dataset, along with generated

3D assets and code, as supplementary material 1.

1. Introduction

In recent years, there has been significant research and

development in the domain of semantic segmentation — the

act of assigning class labels to pixels in an image. However,

much of this pertains to ideal weather and lighting condi-

tions. This poses a real problem in gauging the performance

and robustness of deep learning networks that are trained for

semantic segmentation of road scenes. Thus, comprehen-

sive datasets that include scene influence factors [7] such as

weather and lighting are essential.

1ProcSy: https://uwaterloo.ca/wise-lab/procsy

Figure 1. ProcSy dataset sample frame (from top-left going across

then down): RGB image, GT ID image, depth map, 1 occlusion

map

In the real world, it is seldom the case that a road scene

can be recaptured multiple times in various weather/seasons

with varying lighting patterns, while keeping scene features,

such as dynamic objects, the same. There have been ad-

vances in approaching this as a domain adaptation prob-

lem, but these tend to be expensive. For instance, Dark

Cityscapes dataset [24] required the recording of various

Zurich streets at different times of the day in order to apply

guided style transfer.

Creating road scene weather and lighting variation is

much more feasible and repeatable in a virtual environment.

Research has progressed either via reverse-engineering ex-

isting commercial games [1, 21] or building road scene sim-

ulators from the ground-up [9]. Today, an open-source au-

tonomous driving simulator such as CARLA can be used for

influence factor variations and the data collection pipeline.

In this paper, we follow this approach and leverage the

benefits of procedural modeling to create a virtual driving

environment that replicates a real-life area of the world. The

semi-automated nature of 3D procedural modeling tools en-

ables us to rapidly model vast city areas for an infinite pos-

sibility of dataset creation and rendering, with a minimal

effort.

1 88



Specifically, we make the following contributions:

(1) We present a novel workflow to replicate a real-world

operational design domain in order to generate a semantic

segmentation dataset with weather and lighting variations.

(2) We generate a sample synthetic dataset, ProcSy, con-

sisting of 11,000 unique image frames that represent a 3

km2 area of urban Canada (Fig. 1). This dataset also com-

prises semantic segmentation ground truth data, depth data,

and vehicle occlusion maps. The dataset includes environ-

mental influence factor variations in the form of rain, cloud,

puddles, and Sun angle.

(3) We demonstrate the usefulness of ProcSy by using it to

analyze the performance of an off-the-shelf deep-neural net-

work, Deeplab v3+. We show the effects correlation of en-

vironmental factors, depth, and occlusion on the network’s

predictive capabilities.

The paper is structured as follows. In Sec. 2 we pro-

vide the required background. In Sec. 3 we show related

work in semantic segmentation and inclement weather road-

scene datasets. Sec. 4 describes the technical approach we

have taken for generating the ProcSy dataset. In Sec. 5 we

present three experiments using ProcSy to analyze the ef-

fects of influence factor variations on the performance of

Deeplab v3+. Finally, we present conclusions and our vi-

sion for future research work in Sec. 6.

2. Background

2.1. Semantic Segmentation Network

Semantic segmentation of road scenes is an important

domain of research in autonomous vehicle (AV) perception.

Raw camera imagery is stored as a pixel matrix of RGB

color values. The semantic segmentation task assigns each

pixel into one of several classes of objects that are directly

relevant to road scenes.

The research community has embraced Cityscapes

Dataset, the seminal work of Cordts et al. [6], as the stan-

dard in benchmarking road-scene semantic segmentation

networks. For the purposes of our experimentation, we fo-

cus on the 19 classes that are outlined by Cityscapes as rel-

evant road scene classes.

We run our experiments with DeepLab v3+ [4]. The net-

work is currently amongst state-of-the-art for Cityscapes’

semantic segmentation task with a peak 82.1% mIoU accu-

racy. They achieve this by implementing atrous convolu-

tions into the network architecture [3] and applying depth-

wise separable convolution to the atrous spatial pyramid

pooling and decoder modules [5]. We use a ResNet-50

backbone architecture [14] that has been pre-trained on Im-

ageNet dataset [8]. This requires less time to train than

ResNet-101, thus allowing for quicker training and testing

iterations.

2.2. Procedural Modeling

Procedural modeling is a 3D modeling paradigm based

on sets of rules that are iterated upon. These rulesets are

derived from Lindenmayer Systems (L-systems) [20]. An

L-system is a type of formal language that was first devel-

oped by Hungarian botanist Aristid Lindenmayer in 1968.

L-system is an iterative, parallel rewrite system. There is

an initial axiom string from which the pattern propagates,

and there exist rules to translate the string into generated

structures after every iteration.

Parish et al. published seminal work towards automatic

procedural modeling of cities [18]. This consists of tak-

ing the aforementioned L-system and extending it — called

CGA Shape grammar. With their CityEngine urban plan-

ning tool, based around CGA Shape grammar rules, they

have enabled professionals in various industries (from ur-

ban planners to movie and video game artists) to rapidly

prototype large vistas while cutting costs in the process.

Procedural modeling can also be leveraged for semantic

segmentation. This technique (using CityEngine) allows a

single user to rapidly create a virtual rendition of a real-

world map region in a matter of hours (Sec. 4).

3. Related Work

3.1. Inclement Weather Datasets

Segmentation datasets for road scenes have been around

as early as 2008 with Brostow et al. introducing CamVid

Dataset [2]. The Cityscapes Dataset [6], introduced in 2015,

represented a leap in the scale and quality of the publicly

available real-world datasets for semantic segmentation of

road scenes. However, a common criticism of these prelimi-

nary datasets is that they lack in quantity of finely-annotated

images. Another criticism is the lack of variation in weather

and lighting conditions. These earlier datasets presented

imagery in ideal daytime conditions with little to no signs of

inclement weather. In contrast, our dataset employs gradual

variations in weather and lighting conditions in its scenes.

Raincouver dataset [25], published in 2017, is perhaps

the first publicly available dataset to contain rainy driving

scenes at different times of day. This dataset contains only

326 finely annotated images, and is meant to supplement

pre-existing datasets such as Cityscapes. In comparison, our

dataset contains 11,000 finely-annotated images.

The Mapillary Vistas dataset was published in 2018 [17].

This dataset contains 25,000 finely-annotated, non-

temporal images from many different geographical loca-

tions and conditions. However, a caveat with this dataset

is the lack of metadata pertaining to the content of each im-

age. This poses a problem in measuring effects of varying

conditions on the performance of a semantic segmentation

network. Our dataset has a gradual variation in quantifying

rain amount present in scenes (Sec. 4.5).

89



Figure 2. Generation pipeline for the ProcSy dataset: a) data priors that are used for procedural modeling; b) CityEngine is the program

used to generate three-dimensional, procedurally-generated world map; c) UE4 and CARLA are used for realistic lighting and weather

effects; d) dataset generation through CARLA is controlled via Python-based scripting; e) each frame of our dataset have the outlined

images rendered

Berkeley Deep Drive [27] provides a finely-annotated

dataset comprised of 5683 images. This dataset has more

weather and lighting variations than Cityscapes, but is noted

to contain severe labeling inconsistencies in dark regions

[24]. Similar to Mapillary, the BDD100K dataset does not

contain metadata with which the variations can be mea-

sured. Thus, this dataset is also not conducive to measuring

the performance of a network against controlled weather

and lighting variations. In contrast, our dataset contains

metadata about both weather and lighting variations, using

a consistent annotation scheme (Sec. 4.2).

3.2. Synthetic Data Generation

In attempting to study effects of various influence fac-

tors, including weather and lighting conditions, the realm

of synthetic dataset generation appears promising. This is

because variations in a synthetic environment are easier to

control and quantify. One such example dataset is Virtual

KITTI [11] released in 2016. It is a virtual recreation of

the KITTI dataset [12] with the additional benefit that they

replicate each frame in 8 different weather and lighting vari-

ations. In total, Virtual KITTI currently has 21,260 frames

[16] of semantically labeled data. In their paper, they pro-

vide an impact analysis of weather and imaging conditions

on object tracking algorithms. However, they do not pro-

vide any analysis on semantic segmentation, as we have

done in our experiments. As another example from 2016,

Ros et al. published the SYNTHIA dataset [23], which con-

tains 13,400 random road scene annotated images that are

synthetically generated with various lighting and weather

conditions. This dataset was updated in 2017 with the re-

lease of SYNTHIA-SF containing 2224 new images [15].

However, the dataset does not provide metadata quantify-

ing lighting and weather variations, which are necessary to

study their influence on predictions.

Another approach has been to leverage an existing game

environment. Examples include Playing for Data and sub-

sequently Playing for Benchmark datasets, developed using

the Grand Theft Auto V game environment by Richter et

al. in 2016 and 2017 [21, 22]. In total, the latest state of

their research contains 254,064 images. Angus et al. pro-

posed a different and more salable method of data genera-

tion from GTAV in 2018, and published a dataset with more

than 1,000,000 images in ideal weather and lighting condi-

tions [1]. A drawback of using existing games is that their

optimized and closed-source nature does not allow for eas-

ily controlling both the content and the rendering process.

4. Generating the ProcSy Dataset

In this section, we detail the steps summarized in Fig. 2

for generating the ProcSy dataset.

4.1. Procedural Modeling for World Generation

The generation of ProcSy begins with creating a virtual

environment from which to capture road scene imagery.

Our intent is to build a dataset with emphasis on scene varia-

90



tion, therefore we do not focus on temporal frames. Instead,

we collect images by teleporting the camera around a stat-

ically built 3D environment. We choose to only focus on

building an environment with statically placed assets. This

eliminates the effort needed to develop vehicle and pedes-

trian animation and traffic system controls.

We used a procedural modeling tool called CityEngine

(Fig. 2b). As explained in Sec. 2.2, procedural modeling

takes a set of grammar rules and iterates to create rich pat-

terns. In the case of CityEngine, these patterns represent a

three-dimensional derivation of city-scale maps.

OpenStreetMap data [13] is fed into CityEngine as prior

input (Fig. 2a). This data contains macroscopic information

about building footprints and road networks within a city re-

gion. We chose a 3 km2 region of urban Canada (Fig. 3) as

the template to model our virtual environment. Additional

data priors were fed into CityEngine using Shapefiles [10]

from municipal open databases. These data priors include

such things as building heights and tree plantations.

CityEngine stitches data priors together in order to create

a three-dimensional representation of the real-world coun-

terpart. For ProcSy, it took about one-person hour to iden-

tify and collect the relevant priors. The time-consuming as-

pect of procedural modeling is to restructure road networks

by accounting for lane-level details. Such reconstruction is

needed because OpenStreetMap does not contain lane-level

data, such as number of lanes, street/lane-width, or heights

of overpasses and highways.

Due to data unavailability, CityEngine cannot automati-

cally create exact road network layouts. A solution to this

may be to use high-definition (HD) maps with lane-level

details. However, HD map data in an open-source format is

still not readily available in the public domain. Currently,

the most cost-effective approach to this problem is using

openly available satellite imagery of road networks. Thus,

we used satellite imagery as a reference to manually adjust

the road graphs in CityEngine. This step took one person

approximately 40 hours for the 3 km2 geographical area.

4.2. Generating Ground Truth and Depth Data

After the 3D environment has been generated and

populated with static vehicle and pedestrian models in

CityEngine, these are exported to Unreal Engine 4 (UE4;

Fig. 2c). Doing so enables us to have more interaction

with the rendering pipeline. CityEngine uses a traditional

rendering approach with a simplified lighting model to al-

low real-time rendering of massive amounts of geometry.

This means that end result of the render has limited realism.

Also, CityEngine’s renderer currently does not support sim-

ulating rain and other adverse weather effects.

Unreal Engine 4 relies on Physically-Based Rendering

(PBR) [19] to approximate a realistic lighting model. Tex-

tures and materials used throughout UE4 assets are rendered

in an energy-conservative manner to simulate physics of

light in the real world. Further, using an open-source sim-

ulation platform such as CARLA streamlines the process

of dataset generation. CARLA leverages UE4’s depth and

stencil buffers to output scene depth and automatic seman-

tic annotations. This provides us with the platform for our

dataset generation (Fig. 2d-e).

4.3. Vehicle Instances and Occlusion Maps

We generate instance-level segmentation for the vehicle

class. UE4 has the capability of rendering metallic mate-

rial buffer output. We leverage the idea of PBR materials

and UE4’s metallic buffer output in order to label vehicle

models as instance groups (i.e., all instances of a specific

vehicle model have the same label). By assigning each ve-

hicle model’s material to a different specularity value, we

can have a different metallic buffer id per vehicle model.

Additionally, we create a post-effect edge detection filter

using a combination of Sobel and Laplacian edge detection

algorithms. The resulting edges can be used to further break

up the instance groups into individual instances. A space-

saving measure, we encode ground truth data annotations,

vehicle per-model instance ids, and edge detections in the

same PNG file (called the GT ID image in Fig. 2e), where

each takes up one of the RGB channels.

For our dataset, there are 43 unique vehicle models in

use. We create a post-effects filter to generate occlusion

maps of vehicle models. We step through each of the unique

vehicle models and use this filter to output occlusions for

each frame that contains the corresponding vehicle model.

As such, for each frame of the dataset, we have a set of

occlusion maps for vehicle models that appear in the frame.

We use these occlusion maps in one of the experiments in

Sec. 5.2.

4.4. Data Selection

Data points are selected such that the camera is always

facing towards a road-scene. The binary map in Fig. 3

is derived from a top-down render of the 3 km2 map re-

gion. In its original resolution of 4545×4541 pixels, there

are 1,349,841 unique camera positions that can be chosen

(white pixels). At each road-going (white) pixel, the top 2

optimal orientations were determined by a simple line trac-

ing algorithm. A longer, unobstructed line trace (a black

pixel causes obstruction) is assumed to be a more optimal

orientation. Afterwards, one optimal orientation was cho-

sen at random for each road-going pixel.

From the set of 1,349,841 road scenes, using uniform

random sampling, crude renders were first taken to iden-

tify 11,000 clean frames for our experimental dataset. This

identification process required a human-in-the-loop to en-

sure frames did not have spawning issues with statically

placed assets such as vehicles and pedestrians. An exam-

91



Figure 3. binary mask representing road-going pixels (white) of a

3 km2 map region of urban Canada in top-down view; centered

around (decimal degrees notation): 43.502507, -80.530754

ple non-clean frame would be the camera spawning inside

a statically placed road-going vehicle, which means all or

most of the frame would show only the vehicle class.

Once clean frames were identified, the dataset was split

into a training set of 8000 frames, a validation set of 2000

frames, and a test set of 1000 frames. In Fig. 3, frames from

the bottom-right quadrant were used for validation and test

sets. Frames from the other 3 quadrants were used for the

training set. The dataset was rendered in Cityscapes reso-

lution (2048×1024 pixels) with the following outputs per

frame: RGB image (2.5mb), GT ID image (50kb), depth

map (790kb), and an occlusion maps folder (approx. 60kb)

containing n images where n refers to the number of unique

vehicles that appear in the frame (Fig. 2e).

4.5. Influence Factors Variations

Our experimentation focuses on influence factor varia-

tions. We use CARLA’s capability to generate depth maps,

and we already discussed the generation of occlusion maps

for vehicle class in Sec. 4.3. The remaining influence fac-

tors are environmental ones, which we achieve with help

of existing UE4 functionality and CARLA. CARLA 0.9.1

introduced API calls to easily modify weather parameters

and Sun position in real-time (Fig. 2d). For ProcSy, we se-

lected three weather influence factors, namely rain, cloud,

and puddle deposits (accumulation of water on road pave-

ment). For each of these factors, we generate data for five

different intensity levels of 0%, 25%, 50%, 75%, and 100%.

Figure 4. road scene frame approximately showing the Sun posi-

tions in and out of frame that are considered; red x’s indicate Sun

location and corresponding tuples show azimuth and altitude val-

ues used in CARLA

We also use the Sun’s position in the sky as another in-

fluence factor (Fig. 4), consisting of the Sun’s azimuth and

altitude angles. In order to reduce the amount of variations

to study, we first make note of positions in a road scene

frame where the Sun’s angle and coincident shadow effects

are expected to have a meaningful impact. We note that be-

low the horizon the Sun’s angle is irrelevant. Also, a typical

road scene is expected to have buildings or other architec-

ture along the left and right sides. These generally approach

a vanishing point near center of the frame. Therefore, we

identify eight Sun positions within the frame that represent

a V-shape in upper half of the frame. We also consider four

Sun positions outside the frame.

With the identified environmental influence factor varia-

tions, we can create 5×5×5×12=1500 unique RGB images

for each frame of our dataset. As explained in Sec. 5, we

use a subset of this for our experimentation in order to en-

able faster experiment iterations.

5. Analysis with ProcSy Dataset

In this section, we present three experiments to demon-

strate the usage of our synthetic data for understanding dif-

ferent effects of influence factors on semantic segmentation

model’s performance. For each of the three experiments we

give the experimental objective, details, results, and actions

suggested by the results.

5.1. Effects of influence factors on model’s perfor­
mance

In this experiment, we train and compare the perfor-

mance of two Deeplab v3+ models: model A is trained with

8000 clean images, and model B is trained with 8000 im-

ages with equal proportion of three influence factors (rain,

cloud, and puddles). More precisely, model B’s training

images are split into three equal parts, one per factor. Then

each part is split in five equal sub-parts, one for a differ-

92



Figure 5. Performance of model A and B with different factors (each row); here, due to space constraints, we only show samples at 100%

level for each influence factor

ent level of the given factor to be applied: 0%, 25%, 50%,

75%, and 100%. Each model is trained with 140,000 itera-

tions with a batch-size of 16 and crop-size of 512×512. The

performance of each model is evaluated by testing with dif-

ferent influence factors. The purpose of this experiment is

two-fold. First, we would like to observe how the influence

factors degrade the performance of model A. Second, it is

important to know if model B is able to generalize across

different influence factors and is more robust than model A.

Otherwise, we would need to explore more advanced train-

ing methods to improve robustness, e.g., [28].

In Fig. 6, we show mIoU of two models under differ-

ent testing conditions, where all test images have a certain

level of a influence factor. For model A, as we increase the

level of each influence factor, its performance worsens. Ini-

tially, we found it surprising that cloud and puddle factors

decrease the performance more than the rain factor does.

The reason for this is largely due to the model inaccurately

predicting sky as another class, such as car. This kind of

error can be seen in Fig. 7, where we plot the IoU of sev-

eral classes for each model. For example, in Fig. 7, the

IoU values of car and sky classes reduce significantly with

increased clouds compared to the other classes. Similarly,

we can also see that puddles have a strong negative effect

on person, car, and road classes, because the puddle factor

creates reflection of objects on the ground. In contrast to

model A, model B has generally stable performance across

all and different levels of factors, which suggests that the

model can generalize from the exposure to these factors in

training. Fig. 5 shows samples of each model’s predic-

tion under different situations. We note that there is a small

gap in overall and class-wise performance when testing on

clean images; however, this can be explained by the fact

Figure 6. mIoU for each testing scenarios for two models, A and

B; x-axis denotes the intensity level of a given influence factor in

each scenario

that model B was not trained with as many clean images as

model A. Overall, our results show that model B is more

robust than model A.

5.2. Understanding the effect of occlusion and dis­
tance on network accuracy

The ProcSy dataset allows for the assessment of the qual-

ity of a network’s prediction with respect to depth and oc-

clusion. Performing this analysis on an existing real-world,

autonomous driving dataset such as Cityscapes [6] is diffi-

cult since occlusion information is not available. However,

this information can allow us to understand more about the

reliability and weaknesses of a model.

In this experiment, we randomly choose 270 im-

93



Figure 7. IoU values for 4 classes: person, sky, car and road; each row corresponds to each testing scenario (rain, cloud and puddle) and

each column corresponds to each class

Figure 8. ’a-e’ show model A’s accuracy on vehicles according to occlusion level and depth maps of the test set; darker green color

corresponds to higher accuracy; ’f’ shows frequency of vehicles in training set; scales for these plots are shown in color bars at the right.

The color bar for the distribution plot represents the distribution density.

ages with a total of 1200 vehicles in the test set. Also,

we plot the distribution of vehicles in the training set

according to occlusion and depth (Fig. 8f). Similar to Syn-

scapes [26], we divide the predicted pixels into subsets of

94



Figure 9. mIoU values for each model of Sec.5.3

[0%, 20%], [20%, 40%], [40%, 60%], [60%, 80%], [80%, 100%]
according to the depth and amount of occlusion of each

vehicle. Then, we calculate accuracy for each subset, after

which we use cubic spline interpolation to get a contour

plot. We repeat the same process for different levels of rain

in the images, as shown in Fig. 8.

For the no rain case (Fig. 8a), generally we see that a

higher amount of occlusion or depth will lower the model’s

accuracy. Furthermore, the vehicle distribution shown in

Fig. 8f indicates that depth and occlusion effects induce an

irreducible source of error. Specifically in Fig. 8f, although

the right-most concentrated cluster has higher amount of

data than the bottom-most region, the model’s accuracy at

the right-most cluster in Fig. 8a is still lower than the accu-

racy in the bottom region where there is little vehicle data.

Also, we observe that in the region bounded by

[0%, 20%] occlusion and [0%, 60%] depth, the model’s ac-

curacy is quite stable up until 50% rain amount (Fig. 8c).

This region corresponds to the left-most cluster in the dis-

tribution map (Fig. 8f). In general, the effects of rain re-

duces the model’s performance significantly, especially for

regions (in Fig. 8f) with little data. However, the degrada-

tion effect of rain is counter-intuitive in some regions where

the accuracies with high amounts of occlusion and depth are

higher than regions with lower amounts of occlusion and

depth. For example, in Fig. 8e, the model’s accuracy in the

top-right region is higher than the middle-right region. This

is surprising and requires further investigation.

5.3. Estimating the amount of real­world data to be
collected

Collecting and labeling more data in different weather

conditions is the simplest way to improve model’s robust-

ness. However, this is a costly and laborious task, and one

may want to know the optimal amount of data to collect. We

show in this experiment how the ProcSy dataset can help us

estimate this number.

We train and compare the performance of four different

models, one with 3000 clean images, and the other three

with the same 3000 clean images and an addition of 100,

500, or 1000 rainy images (each additional set containing

equal distribution of images at a given level: 25%, 50%,

75%, 100%) respectively. We further note that rainy im-

ages are created by randomly taking and modifying weather

conditions from the existing 3000 images, so that rain is the

only indicative feature that suggests any difference in the

performance between these models.

The results are shown in Fig. 9, where we can see

that most of the improvement could be obtained by adding

just 100 rainy images. For instance, when the amount of

rain is 100%, it improves the performance by 10% (from

61.8% to 71.8% mIoU), whereas adding another 900 rainy

images only improves performance by an additional 2%.

Also, adding 1000 rainy images only gives us a slight

increase in mIoU compared to adding only 500 images.

Since raindrops cause occlusion effects in the images (a

kind of irreducible source of error), this result suggests that

adding more rainy images will likely not further improve the

model’s performance. By performing similar experiments

for other influence factors, one can estimate the reasonable

amount of real-world data that should be collected to im-

prove the robustness of a given model.

6. Conclusions and Future Work

We presented an approach for rapidly producing a syn-

thetic replica of a real-world locale using procedural mod-

eling in order to generate road scenes with different influ-

ence factors and high-quality semantic annotations. We

used the approach to create ProcSy, a dataset for seman-

tic segmentation with different influence factors, including

varying depth, occlusion, rain, cloud, and puddle levels.

Our experiments show the utility of ProcSy to study the

effect of influence factors on the performance of Deeplab

v3+, a state-of-the-art deep network for semantic segmen-

tation. In our experiments, variations in puddle and cloud

levels affected the networks performance surprisingly more

significantly than rain levels. Further, including as little

as 3% of rainy images in the training set led to large im-

provements of the networks robustness on such imagery (by

about 10%), whereas adding more than 15% of rainy images

showed signs of diminishing returns. This sort of knowl-

edge can be useful to determine how much real-world data

for different influence factors to collect. This remains an

exploration point for future work.

While this paper studied effects of influence factors in-

dividually, future work should explore their combinations.

Further exploration remains for understanding correlation

of distribution densities of the factors on performance, as

well as studying the effect of the factors in real-world data.

95



References

[1] M. Angus, M. ElBalkini, S. Khan, A. Harakeh, O. An-

drienko, C. Reading, S. L. Waslander, and K. Czarnecki.

Unlimited road-scene synthetic annotation (URSA) dataset.

CoRR, abs/1807.06056, 2018. 1, 3

[2] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-

mentation and recognition using structure from motion point

clouds. In ECCV (1), pages 44–57, 2008. 2

[3] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. CoRR, abs/1706.05587, 2017. 2

[4] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.

Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 801–

818, 2018. 2

[5] F. Chollet. Xception: Deep learning with depthwise separa-

ble convolutions. CoRR, abs/1610.02357, 2016. 2

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3213–3223, 2016. 2, 6

[7] K. Czarnecki and R. Salay. Towards a framework to man-

age perceptual uncertainty for safe automated driving. In

SAFECOMP 2018 Workshops, WAISE, Proceedings, pages

439–445, 2018. 1

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

Imagenet: A large-scale hierarchical image database. 2009.

2

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and

V. Koltun. CARLA: An open urban driving simulator. In

Proceedings of the 1st Annual Conference on Robot Learn-

ing, pages 1–16, 2017. 1

[10] E. ESRI. Shapefile technical description. An ESRI white

paper, 1998. 4

[11] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual

worlds as proxy for multi-object tracking analysis. CoRR,

abs/1605.06457, 2016. 3

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of

Robotics Research, 32(11):1231–1237, 2013. 3

[13] M. Haklay and P. Weber. Openstreetmap: User-generated

street maps. IEEE Pervasive Computing, 7(4):12–18, 2008.

4

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 2

[15] D. Hernandez-Juarez, L. Schneider, A. Espinosa,

D. Vazquez, A. Lopez, U. Franke, M. Pollefeys, and

J. C. Moure. Slanted stixels: Representing san franciscos

steepest streets. 2017. 3

[16] Naver. Proxy Virtual Worlds. http://www.europe.

naverlabs.com/Research/Computer-Vision/

Proxy-Virtual-Worlds. 3

[17] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder.

The mapillary vistas dataset for semantic understanding of

street scenes. In International Conference on Computer Vi-

sion (ICCV), 2017. 2

[18] Y. I. H. Parish and P. Müller. Procedural modeling of cities.

In Proceedings of the 28th Annual Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH ’01,

pages 301–308, New York, NY, USA, 2001. ACM. 2

[19] M. Pharr, W. Jakob, and G. Humphreys. Physically based

rendering: From theory to implementation. Morgan Kauf-

mann, 2016. 4

[20] P. Prusinkiewicz and J. Hanan. Lindenmayer systems, frac-

tals, and plants, volume 79. Springer Science & Business

Media, 2013. 2

[21] S. R. Richter, Z. Hayder, and V. Koltun. Playing for bench-

marks. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2213–2222, 2017. 1, 3

[22] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. Playing

for data: Ground truth from computer games. In B. Leibe,

J. Matas, N. Sebe, and M. Welling, editors, European Con-

ference on Computer Vision (ECCV), volume 9906 of LNCS,

pages 102–118. Springer International Publishing, 2016. 3

[23] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and

A. Lopez. The SYNTHIA Dataset: A large collection of

synthetic images for semantic segmentation of urban scenes.

2016. 3

[24] C. Sakaridis, D. Dai, and L. V. Gool. Semantic night-

time image segmentation with synthetic stylized data, grad-

ual adaptation and uncertainty-aware evaluation. CoRR,

abs/1901.05946, 2019. 1, 3

[25] F. Tung, J. Chen, L. Meng, and J. Little. The raincouver

scene parsing benchmark for self-driving in adverse weather

and at night. IEEE Robotics and Automation Letters, PP:1–1,

07 2017. 2

[26] M. Wrenninge and J. Unger. Synscapes: A photorealistic

synthetic dataset for street scene parsing. arXiv preprint

arXiv:1810.08705, 2018. 7

[27] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and

T. Darrell. BDD100K: A diverse driving video database with

scalable annotation tooling. CoRR, abs/1805.04687, 2018. 3

[28] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving

the robustness of deep neural networks via stability training.

In Proceedings of the ieee conference on computer vision and

pattern recognition, pages 4480–4488, 2016. 6

96


